Snap-, CLIP- and Halo-Tag Labelling of Budding Yeast Cells
نویسندگان
چکیده
Fluorescence microscopy of the localization and the spatial and temporal dynamics of specifically labelled proteins is an indispensable tool in cell biology. Besides fluorescent proteins as tags, tag-mediated labelling utilizing self-labelling proteins as the SNAP-, CLIP-, or the Halo-tag are widely used, flexible labelling systems relying on exogenously supplied fluorophores. Unfortunately, labelling of live budding yeast cells proved to be challenging with these approaches because of the limited accessibility of the cell interior to the dyes. In this study we developed a fast and reliable electroporation-based labelling protocol for living budding yeast cells expressing SNAP-, CLIP-, or Halo-tagged fusion proteins. For the Halo-tag, we demonstrate that it is crucial to use the 6'-carboxy isomers and not the 5'-carboxy isomers of important dyes to ensure cell viability. We report on a simple rule for the analysis of ¹H NMR spectra to discriminate between 6'- and 5'-carboxy isomers of fluorescein and rhodamine derivatives. We demonstrate the usability of the labelling protocol by imaging yeast cells with STED super-resolution microscopy and dual colour live cell microscopy. The large number of available fluorophores for these self-labelling proteins and the simplicity of the protocol described here expands the available toolbox for the model organism Saccharomyces cerevisiae.
منابع مشابه
Fluorescent labeling of COS-7 expressing SNAP-tag fusion proteins for live cell imaging.
SNAP-tag and CLIP-tag protein labeling systems enable the specific, covalent attachment of molecules, including fluorescent dyes, to a protein of interest in live cells. These systems offer a broad selection of fluorescent substrates optimized for a range of imaging instrumentation. Once cloned and expressed, the tagged protein can be used with a variety of substrates for numerous downstream ap...
متن کاملSelf-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy
Research in cell biology demands advanced microscopy techniques such as confocal fluorescence microscopy (FM), super-resolution microscopy (SRM) and transmission electron microscopy (TEM). Correlative light and electron microscopy (CLEM) is an approach to combine data on the dynamics of proteins or protein complexes in living cells with the ultrastructural details in the low nanometre scale. To...
متن کاملFunctional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae.
We have employed a novel in vivo approach to study the structure and function of the eukaryotic kinetochore multiprotein complex. RNA interference (RNAi) was used to block the synthesis of centromere protein A (CENP-A) and Clip-170 in human cells. By coexpression, homologous kinetochore proteins from Saccharomyces cerevisiae were then tested for the ability to complement the RNAi-induced phenot...
متن کاملA SNAP-Tagged Derivative of HIV-1—A Versatile Tool to Study Virus-Cell Interactions
Fluorescently labeled human immunodeficiency virus (HIV) derivatives, combined with the use of advanced fluorescence microscopy techniques, allow the direct visualization of dynamic events and individual steps in the viral life cycle. HIV proteins tagged with fluorescent proteins (FPs) have been successfully used for live-cell imaging analyses of HIV-cell interactions. However, FPs display limi...
متن کاملPseudohyphae formation in Candida glabrata due to CO2 exposure
Background and Purpose: Formation of pseudohyphae is considered a virulence factor in Candida species. Generally, Candida glabrata grows as budding yeast cells; however, reports illustrated that C. glabrata could form pseudohyphal cells in response to some stimuli. In this study, we provided insight into the ability of C. glabrata in forming pseudohyphal cells under different levels of carbon d...
متن کامل